929 research outputs found

    Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

    Get PDF
    Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles

    Concurrent validity and reliability of a semi-automated approach to measuring the magnetic resonance imaging morphology of the knee joint in active youth

    Get PDF
    Post-traumatic knee osteoarthritis is attributed to alterations in joint morphology, alignment, and biomechanics triggered by injury. While magnetic resonance (MR) imaging-based measures of joint morphology and alignment are relevant to understanding osteoarthritis risk, time consuming manual data extraction and measurement limit the number of outcomes that can be considered and deter widespread use. This paper describes the development and evaluation of a semi-automated software for measuring tibiofemoral and patellofemoral joint architecture using MR images from youth with and without a previous sport-related knee injury. After prompting users to identify and select key anatomical landmarks, the software can calculate 37 (14 tibiofemoral, 23 patellofemoral) relevant geometric features (morphology and alignment) based on established methods. To assess validity and reliability, 11 common geometric features were calculated from the knee MR images (proton density and proton density fat saturation sequences; 1.5 T) of 76 individuals with a 3-10-year history of youth sport-related knee injury and 76 uninjured controls. Spearman's or Pearson's correlation coefficients (95% CI) and Bland-Altman plots were used to assess the concurrent validity of the semi-automated software (novice rater) versus expert manual measurements, while intra-class correlation coefficients (ICC 2,1; 95%CI), standard error of measurement (95%CI), 95% minimal detectable change, and Bland-Altman plots were used to assess the inter-rater reliability of the semi-automated software (novice vs resident radiologist rater). Correlation coefficients ranged between 0.89 (0.84, 0.92; Lateral Trochlear Inclination) and 0.97 (0.96, 0.98; Patellar Tilt Angle). ICC estimates ranged between 0.79 (0.63, 0.88; Lateral Patellar Tilt Angle) and 0.98 (0.95, 0.99; Bisect Offset). Bland-Altman plots did not reveal systematic bias. These measurement properties estimates are equal, if not better than previously reported methods suggesting that this novel semi-automated software is an accurate, reliable, and efficient alternative method for measuring large numbers of geometric features of the tibiofemoral and patellofemoral joints from MR studies. </p

    Development and Application of Synthetic Affinity Ligands for the Purification of Ferritin-Based Influenza Antigens

    Get PDF
    A recently developed novel recombinant influenza antigen vaccine has shown great success in preclinical studies in ferrets and mice. It provides broader protection, and is efficient to manufacture compared to the conventional trivalent influenza vaccines (TIV). Each strain of the recombinant antigen has a constant self-assembled bacterial ferritin core which, if used as a target for affinity chromatography, could lead to a universal purification method. Ferritin in silico models were used to explore potential target binding sites against ligands synthesized by the four-component Ugi reaction. Two ligands, SJ047 and SJ055, were synthesized in solution, characterized by 1H, 13C, and 2D NMR spectroscopy, and subsequently immobilized on the PEG-functionalized beads. Ligands SJ047 and SJ055 displayed apparent Kd values of 2.04 × 10–7 M and 1.91 × 10–8 M, respectively, against the ferritin. SJ047 and SJ055-functionalized resins were able to purify hemagglutinin (New Caledonia)-ferritin expressed in a crude Human Embryonic Kidney (HEK) cell supernatant in a single step to a purity of 85 ± 0.5% (97 ± 1% yield) and 87.5 ± 0.5% (95.5 ± 1.5% yield), respectively. Additionally, SJ047 and SJ055-functionalized resins purified the recombinant antigens when spiked at known concentrations into HEK supernatants. All three strains, hemagglutinin (New Caledonia)-ferritin, hemagglutinin (California)-ferritin, and hemagglutinin (Singapore)-ferritin were purified, thereby offering an ideal alternate platform for affinity chromatography. Following elution from the affinity adsorbents, absorbance at 350 nm showed that there was no aggregation of the recombinant antigens and dynamic light scattering studies further confirmed the structural integrity of the recombinant antigen. The use of Ugi ligands coupled to a PEG-spacer arm to target the ferritin core of the strain is entirely novel and provides an efficient purification of these recombinant antigens. This approach represents a potentially universal method to purify any ferritin-based vaccine

    Human hippocampal CA3 damage disrupts both recent and remote episodic memories

    Get PDF
    Neocortical-hippocampal interactions support new episodic (event) memories, but there is conflicting evidence about the dependence of remote episodic memories on the hippocampus. In line with systems consolidation and computational theories of episodic memory, evidence from model organisms suggests that the cornu ammonis 3 (CA3) hippocampal subfield supports recent, but not remote, episodic retrieval. In this study, we demonstrated that recent and remote memories were susceptible to a loss of episodic detail in human participants with focal bilateral damage to CA3. Graph theoretic analyses of 7.0-Tesla resting-state fMRI data revealed that CA3 damage disrupted functional integration across the medial temporal lobe (MTL) subsystem of the default network. The loss of functional integration in MTL subsystem regions was predictive of autobiographical episodic retrieval performance. We conclude that human CA3 is necessary for the retrieval of episodic memories long after their initial acquisition and functional integration of the default network is important for autobiographical episodic memory performance

    Individualization as driving force of clustering phenomena in humans

    Get PDF
    One of the most intriguing dynamics in biological systems is the emergence of clustering, the self-organization into separated agglomerations of individuals. Several theories have been developed to explain clustering in, for instance, multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of fish, and animal herds. A persistent puzzle, however, is clustering of opinions in human populations. The puzzle is particularly pressing if opinions vary continuously, such as the degree to which citizens are in favor of or against a vaccination program. Existing opinion formation models suggest that "monoculture" is unavoidable in the long run, unless subsets of the population are perfectly separated from each other. Yet, social diversity is a robust empirical phenomenon, although perfect separation is hardly possible in an increasingly connected world. Considering randomness did not overcome the theoretical shortcomings so far. Small perturbations of individual opinions trigger social influence cascades that inevitably lead to monoculture, while larger noise disrupts opinion clusters and results in rampant individualism without any social structure. Our solution of the puzzle builds on recent empirical research, combining the integrative tendencies of social influence with the disintegrative effects of individualization. A key element of the new computational model is an adaptive kind of noise. We conduct simulation experiments to demonstrate that with this kind of noise, a third phase besides individualism and monoculture becomes possible, characterized by the formation of metastable clusters with diversity between and consensus within clusters. When clusters are small, individualization tendencies are too weak to prohibit a fusion of clusters. When clusters grow too large, however, individualization increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure

    The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts

    Get PDF
    The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1's subcellular distribution. © 2013 Shi et al

    Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi impenetrable National Park, Uganda

    Get PDF
    Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions
    • …
    corecore